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Abstract
In [I] we addressed the problem of existence of superconvergence points by a

computer-based proof and we gave a detailed study of the superconvergence points
for the components of the gradient in finite element solutions for Laplace's and
Poisson's equations. Here we employ the same approach to study the supercon-
vergence for the gradient of the displacement, the strain and the stress for finite
element solutions of the equations of plane elasticity. We give the superconver-
gence points for the components of the gradient of the displacement, the strain
and stress for meshes of triangles and squares of degree p, 1 < p _< 4. For the
meshes of triangles we investigated the effect of the topology of the mesh by con-
sidering four mesh-patterns which typically occur in practical meshes, while in the
case of square elements we studied the effect of the element-type (tensor-product,
serendipity or other).
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1 Introduction

In [1] we introduced a computer-based approach for finding the superconver-
gence points for the derivatives in finite element approximations of Laplace's and
Poisson's equations. We proved a mathematical theorem which states that a super-
convergence point exists if and only if it can be determined by a numerical method-
ologv. We employed the numerical methodology to find superconvergence points
for the gradient in finite element solutions of Laplace's and Poisson's equation for
meshes of triangular or square elements of polynomial degree p, for 1 < p _5 7.
The conclusions of the study in [1] may be summarized as follows:

1. The computer-based methodology takes directly into account the topology
of the mesh, the element polynomial spaces and the type of the differential
equation (homogeneous or non-homogeneous).

2. For solutions of Laplace's equation (i.e. the homogeneous equation) the su-
perconvergence points for the derivatives always exist for any mesh-pattern
and type of elements.

3. For solutions of Poisson's equation (i.e. the non-homogeneous equation) the
superconvergence points may not exist depending on the mesh-pattern and
the element-type.

In this paper we will employ an extension of the computer-based methodology
of [1] to address the problem of existence of superconvergence points for the gradi-
ent of the displacement, strain and stress in finite element approximations of the
equations of plane elasticity. We note that the majority of the classical studies on
superconvergence (see [2-29] and the citations in these papers) deal primarily with
Poisson's equation (with a few exceptions; see for example [18], [19], [20] and [24]
which address the problem of plane elasticity).

The majority of practical computations in plane elasticity employ elements of
degree p, with 1 _<p _< 4 and most often p = 2, and involve the homogeneous case
(i.e. the body-force vanishes identically). Therefore it is important to investigate in
detail the superconvergence for the components of the gradient of the displacement,
strain and stress for these cases (i.e. for 1 < p _5 4 and zero body-force). Similarly
as in [1] we will study the superconvergence for the standard displacement finite
element method and meshes of triangular and square elements.

There are two types of superconvergence (see [12]), namely:

(i). Direct superconvergence: By this we mean the superconvergence of pointwise
values of quantities computed directly from the finite element solution.
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(ii). Superconvergence via averaging: The superconvergence of post-processed val-
ues of quantities which are obtained from the finite element solution by em-
ploying a local averaging.

Here (as in [1]) we will address only the case of direct superconvergence. The same
methodclogies can be employed to study superconvergence via averaging; we will
present such a study in a future paper. Further, to limit the length of the paper
we show only some illustrative results. Additional results on the superconvergence
of various quantities defined in terms of the stresses, the strains etc. can be easily
obtained using the approach of the paper.

Following this Introduction, we introduce notations for the model problem of
plane elasticity, its finite element approximation and the types of meshes employed,
we outline the theoretical setting, we describe the numerical methodology for find-
ing the superconvergence points and we report the results of the numerical study
and the conclusions.

2 Preliminaries

We shall consider the vector-valued boundary-value problem

20
(2.1a) Lj(u):= - • Cj(u))-fj in fl

j=i .1z

(2.1b) ui = 0 on rD

2

(2.1c) E qaj(u)nj = ii on rN
j3=

where i = 1, 2.
Here fl C R2 is a bounded domain with boundary 00= rD U rN;

n := (n,, n2 ) is the outward pointing unit-normal on rN;

fi, i = 1, 2 are the components of the load-vector (body-force);
fi, i = 1, 2 are the components of the normal-flux vector (traction) applied on rN;

rD = 0, rDIn rJI = 0; u = (u1 , u2) is the solution-vector (displacement);

(2.2a) ) =) i,j = 1,2
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2

(2.2b) oj(u) := , a jklea(t), ij = 1,2
kj-1

are the components of the strain and the stress, respectively;
a,$,a, i, j, k, I = 1, 2, are the material-coefficients (elastic constants) which satisfy

(2.3a) ajk, - aj= t = ai~j, ij, k, 1 = 1,2

2 2
(2.3b) E aijt eij e _> c F eq eij, c > 0, V ei- = ep

,jII ,,ij=1

(Conditions (2.3a), (2.3b) are satisfied for linear anisotropic elasticity; in the case

of isotropic plane elasticity a,,jk = #(68 ,kj + 6b 6 kj) +A6,bjl where 6,j is Kronecker's
delta and A, p are Lam6's constants.)

Let us now cast the model problem in variational form. We will use the nota-
tions

(2.4a) H' : { = (v,,v 2) : vE H1(f,)}

(2.4b) H, { v =-(v,,v 2) I vi E IH'(f)), v, = 0 on rD }

with lIv, 1t1 (resp. Iv, 11,) being the usual HI(0l) Sobolev norm (resp. seminorm).

The variational form of the boundary-value problem (2.1) is now posed as:

Find u E H1 such that

2 2

(2.5a) BO(uw) = jInE fv+jfr 1 v V VEHrD
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where the bilinear form Ba : Hr' x H' ---+ R is defined by

(2.54) BO(u,v) :=j I Ou.,Ov.
F,~m aijklO, . akijdkj=1

The energy-norm over any subdomain S C- A is defined by

where Bs(u, w) has the obvious meaning.

Let T = {Th} be a family of meshes of triangles or quadrilaterals with straight
edges. It is assumed that the family is regular, namely: For the triangles the
minimal angle of all the triangles is bounded below by a positive constant, the
same for all the meshes. For the meshes of quadrilaterals it is assumed that the
mesh can be mapped to a mesh of squares by a sufficiently smooth transformation
and hence it is sufficient to study the superconvergence for a mesh of squares (see
[9), [10] for details). Let us introduce the finite-element spaces

(2.6) rh := f{uE H' Iu, oF,. E ý(j), i = 1,2, k l= . M(T)

where F%, is the mapping function for the kth finite-element which maps either a
standard triangular element (using a linear transformation) or a standard quadri-
lateral element (using a bilinear transformation) onto the kth finite element, f
denotes a standard element, M(T,) is the number of elements in the mesh Th,

'P(f) denotes the element-space over r.

As in [1] we will consider the following choices for the element-space ý.'(f):

a. Complete polynomial apace up to degree p.

For the triangular elements we let 4(t) = p,(f) where

(2.7) 01,(f) {PI P p ",&c) = FCi 4,V
i's

For the square elements we consider the following choices for the definition of
the polynomial space S,(*) (see also [32]).
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b. Tensor-product (bi-p) polynomial space of degree p.

(2.8) E(~)(~ :=i {.41 !R2 2 ,~&
oij I

c. Serendipity (trunc) polynomial apace of degree p.

(2.9) &'(f h= P 4 (&, 12) a 0 ,j iii V2 + a,, 1 !C2 + as,, -41 }
d. Intermediate polynomial space of degree p.

(2.10) S"(P):= (P P(&1,,x2) = -,ik + •o p- + -k 4 +1

We let

(2.11) h, := nr Hr

The finite element solution uh of the elasticity problem satisfies:

Find UA, E SAX such that

2 2

(2.12) BO (tt,ti WO yf, j v&+jr 9Vhj 'AAI~

The error is eh := u - u.

3 Definition of the superconvergence quantities

Let Th E T be a finite element grid, u1, E Sp,,rD the corresponding finite

element solution and let r E Th be any element. Let F(u) be the solution quantity

of interest, for example F(u) = or fij(u) or ai,(u), i,j = 1, 2. We areOz.3

interested in the values of the relative error in F(u) at points * E r,

7



SJF(u - uj)(*,)1 if *(U - Uj) 0 0
( I(u - )

(3.1a) 0(*,;F;u, uj,,h,r"): :-

0 ,if*(U - Uj)= 0

where

(3.1b) *(u - uh) := max IF(u - uh)(z)lrer

Let us assume that 7 is an element of fixed geometry (but not of fixed size)
which appears in all the meshes T1 of the sequence T. If there exists a point ;,,
which is fixed with respect to the element r, such that

(3.2) J.m e(•,; F; u, uhh, hr) <5 0:< V : 100
100

we will say that t, is a u - iV%-superconvergence point in element r. Further, we
will call *, a U - i7%-superconvergence point if it is u - ij%-superconvergence point
for every U E U. Note that O(*; F; u, %t, , Ah,) _< 1 and thus all points in every
element r are 100%-superconvergence points. If there exists a point t, such that
(3.2) holds for a given solution u (resp. class of solutions U) with 17 = 0 then *,
is a u-superconvergence (resp. U-superconvergence) point in the classical sense.

Let us now define the following geometrical quantities which will be employed
in the study of superconvergence below. For a given q, 0 <_ V1 _ 100 we define

1. i7%-contour of F(li) in the element T of the mesh TA for the exact solution u:

(3.3) C(,,)(u;rT,T) := {z O " I e(z;F; u, uh,h,r) = --01 }

2. Superconvergence points of F(u) in the element 7 of the mesh Th for the class
of exact solutions U:

(3.4))

8,£



S. q%-band of F(u) in the element " of the mesh TI, for the exact solution u:

(3.5) F(,)(u;r,) ..= E a E- I O(z;F;u,uh,h,r) < }
4. ip%-superconvergence regions of F(u) in the element r of the mesh Th for the
class of exact solutions U:

(3.6) m7.,TU; o ,Th) := ( ,T
SEU

Remark 9.1. We could be interested in the points which are superconvergent simul-
taneously for several functionals e.g. all the stress components. We can formalize
this by assuming a vector functional; the meaning of the 1/%-superconvergence
point for the vector functional is obvious.

4 The class of locally periodic meshes

In this paper we will study the superconvergence of finite element solutions for
the equations of plane elasticity for a special class of locally periodic meshes which
are defined as follows. Let 0 < H < HO, z°o o(xx2)E ,

(4.1) S(z°,H) :=(a =(x1,X2)I Ixi - 4I <H, i = 1,2}

and assume H' is sufficiently small such that S(z°, H0 ) C fl. Further, let y be a
set of multi-indices (ij), x('J) = (xT('i), zT(')) E fl and

(4.2) c( ('J},h) := S(x(i), h) C S(z 0 ,H), (i,j) E y

be the set of the h-cells (or cells) which cover exactly S(z°, H) i.e.

(4.3a) U a(z('O),h) = S(z°,H)
(i4j)EY

(4.3b) c (a(" -'), h)flc(z('2,12), h) = 0 for (i1 , j1 ) 96 (i 2 , j 2 )

9



We will refer to S(z°, H) as the aubdomain of periodicity of the mesh centered at
go. We will denote by

(4.4) Z:= S(0,1):- {((ii)lI ,< <1, i2I < 1

the unit- (master-) cell 2, the h-cell is an h-scaled and translated master-cell.
Let T be a mesh of triangles or squares on the master-cell (the master-mesh)

and !,¶j) be the mesh on c(r('4), h) which is the scaled and translated image
of T. We will consider the family T of locally periodic meshes. Let TI E T and
TA(z°, H) be the restriction of Th on S(z, H) and T,'j) the restriction of T,(=O, H)
on c(z0-"), h). We assume that T,('j) = t,(, (i,j) E -y i.e. Th(z°, H) is made by
the periodic repetition of the h-scaled master mesh.

The type of meshes under consideration is depicted in Fig. 1, where the periodic-
mesh subdomain S(z0 , H) is shown with thick perigram. Outside the subdomain
S(z0 , H) the mesh is arbitrary; it could have curved elements, refinements, etc.

5 Outline of the theoretical setting

Let Q be a vector-valued function with components which are polynomials of
degree (p + 1) defined over the master-cell 6 and let T be the master-mesh. Then
denote

(5.1) p:= Q - QM

where 9qT is the interpolant of degree p of the function Q defined over the master-
mesh T (for which h = 1). Any vector-valued function with components which
are polynomials of degree p on an element rk belongs to S(Trk) and hence any
polynomial of degree p on S(z0 , H) belongs to Sl (S(z0 , H)). It follows that p
defined in (5.1) is Z-periodic; this can be shown exactly as in [401. We have

(5.2a) p(1,A 2) = p(-1, - 2), 1"21 < 1

(5.2b) Ais,)= (l,-1), Jill < 1

Let
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(5.3) HPa(R) {=tf E H'(6) I u satisfies (5.2)}

and

(5.4) S~jPER(:) {u E H' p(6)l ujf E SP('f), i = 1,2, V f~ E T

Further let z" E S' (•) such that

(5.5a) Ba(V',,) = Ba(p,i) V 6 E Sp,pER(Z)

and

(5.5b) (p - ip) = 0

Note that the function V' exists and is uniquely determined (we will compute it
numerically in the examples). Let us also define ik E H 1(Z) by

(5.6) ib:= p- '= Q- Co where ti,:= Q'NTr+V'P

Let 01h E H.ER(c(z('4), h)) be the function 4, defined above, scaled and translated
onto the cell c ((0i), h) of the mesh in S(x°, H) i.e.

(5.7) 4'j(z):= h" 0(i), 4'( = hP0 4 ' (&), i=1,2,

where a - - X(i)), I E c(z(iJ),h). It is easy to see that vPh can be

periodically extended over S(z°, HI).
In [1] we proved the following theorem for Poisson's equation based on the

theory of interior estimates (see [33]-[391):

Theorem 1. (Poisson's equation; see [1]) Let H1 < H < HO and assume that the
following assumptions hold with

(5.8)= 6p+ 1 1
6p=p+1-, = 0 6(6p+1)

11



Assume that the exact solution u satisfies

(5.9a) IIDu..L_(So,)). 5 <K < oo, 0 : lal < p + 2

whereMa:=(aa 2), Du:= Ozc" -621 101 := 01 + al, and

(5.96) R2 a. > 0 where a. := (Dau)(xO)
101=,+1

Further assume that the mesh T1 is such that

(5.10) IlehlI IV(sco.J)) -5 ChPHI, with 2 ! (p + 1)-c

Moreover assume that the meshes Tj in S(zo, H) are such that

(5.11) C 1H• • h _< C2H*

Then for any z E S(z 0, H1 )

(5.12) =Ch

with IAI _< 1 and C independent of h.

Remark 5.1. The theorem assumes that the mesh is periodic in a small subdo-
main (i.e. S(zo, H)) in the interior of the domain and that the solution is smooth
in the neighborhood of the subdomain. Outside the subdomain we assume nei-
ther periodicity of the mesh nor smoothness of the solution. The solution may
have algebraic-type singularities at a finite number of corner points or points of
abrupt change in the type of boundary-condition. Here it is only assumed that the
pollution-error in a shrinking mesh-patch (i.e. T1(z°, H1)) in the interior of the
subdomain is controlled; this implies that the mesh has been adequately refined in
the neighborhood of all singular points.

Remark 5.2. If we further assume that

(5.13) ae ( > • maxtIea > ChP, i = 1,2, e> 0

12



theorem 1 implies that: A point z, in the element r is a superconvergence point

for F(u) = 7 min the element r if and only if = 0. Assumption (5.13)

can be realized by imposing additional restrictions on the values a. of the (p + I)-
derivatives of the solution at zo. This assumption is reasonable because we are
interested in a sufficiently large class of solutions U.

Remark 5.3. Under assumption (5.13) Theorem I also states that: A point zaat'
in the element f is an asymptotically q%-superconvergence point for F(u) = a-

7z•

i=1,2, if and only if 6(zc;F;Q,,Ih, 1 f< - where
'100

[IF•(¢)(z*)I if 3(6): II¢IIL-o•) # 0
(5.14.) O(zf;F;Q,t7,,1,•) := •¢

0, if 1I1I'Lx-(f) = 0

Remark 5.4. The proof of theorem 1 in [40] was based on various interior estimates
for the error in finite element approximations of Poisson's equation, especially the
results given in [38] and [39]. It is very plausible that analogs of these results
hold for finite element approximations of the elasticity equations and more general
elliptic-systems because the main ideas of the proofs of these results carry to the
general case. To our knowledge the precise details are not available for the elasticity
equations. Nevertheless we will assume the validity of the analog of Theorem 1 for
the equations of elasticity.

6 The methodology for determining the super-
convergence points

In order to study the superconvergence of finite element solutions in uniform
mesh-patches in the interior of a subdomain S(z°, H), we let

(6.1) UG : {u E HI(0)I IIDuiIILc(S((O,H)) < K, i = 1,2, 0 _< aI < p + 2}

the class of solutions which are locally smooth in S(z°, H), where S(wo, H) denotes
an interior subdomain of interest in which the mesh is locally periodic as described
above (the subdomain must be a finite distance away from the boundary and points
of roughness of the body-force; see Fig. 1). In the majority of the applications one
is only interested in the subclass of solutions in UG which are "harmonic", namely,

13



(6.2) UOKO:= (U EUG I Lj(u)= 0, i= 1,2, in fl}

We may also assume that the functions are "harmonic" in a subdomain which is
slightly bigger than S(zo, H) and which includes S(zo, H) in its interior.

For a given locally periodic grid with corresponding periodic master-mesh T,
given material orthotropy and given class of smooth solutions U we let

(6.3) Q QI Q(zI,,T 2) = ,CkQk(zIIz2)1
k=1

denote the class of (p + 1)-degree monomials which occur in all (p + 1)-degree
Taylor-series expansions of functions from U. Here Qk, k = 1,...,nd denotes a
set of linearly independent monomials which form a basis for Q. For example, let
us assume that U is the class of smooth solutions Uo given in (6.1); in this case
Q is the 2(p + 2) dimensional space of vector-valued functions with components
which are monornials of degree (p + 1). The set Q which correspond, i. the class
of "harmonic" solutions UR"r is the four-dimensional linear space of "harmonic"
monomials of degree (p+ 1) denoted by Q"M. The "harmonic" basis monomials of
degree (p + 1) for 1 :5 p :5 4, which were employed in the computations, are given
in the Appendix.

The asymptotic values of the error for any smooth solution us in the interior of a
periodic mesh-subdomain can be obtained by solving the periodic boundary-value
problem (5.5), using the master-mesh T over the master-cell Z, with data obtained
from the local (p + 1)-degree Taylor-series expansion Q of the exact solution. The
asymptotic rj%-contours for a given solution us can be obtained by contouring the
function F(lp), with i, defined as in (5.6) corresponding to the local Taylor-series
expansion Q of the solution u. The superconvergence points A for a given class of
solutions U satisfy

(6.4) F(lj)(A) = 0, 1 <i <5 nd

Therefore A is a superconvergence point if and only if the zero-contours of F(•i~)
intersect at a for 1 _< i < nd. Here qbj := pi - z4 which is obtained from (5.6)
for Pi = O, - (Q,)Jne where Qj is the i-th basis monomial of the nd-dimensional
monomial space Q corresponding to the class U. We also let ivi := (QU)1nt + zX".

The asymptotic q%-superconvergence regions for a class of solutions U can be
determined by using numerical optimization. In particular, let us consider the

14



uniform subdivision of the element r into subtriangles with vertices at the set of
points --- :1 {4 . We will define the function( I 1 aF(Oj~(4)I(6.5) iF(.)(k; F; Q, {fi. )", 1,f)h

'im max 100,
"max EIf,(*)(f) I

0M, ....,AP i=1

at the points in "'. The function 1(.)(*; F; Q, {fivj I, 1, f) will be defined for
any point i E f by using linear interpolation in the subtriangles. The asymptotic
17%-superconvergence regions in the element r can be approximated using the level-
sets of the functions f(.); F; Q, {iv , 1, f ) i.e.

(6.6) },=!, 1, ) < 1%

We will call the above approach the direct approach. It is also possible to use a
simplified approach which avoids the use of numerical optimization at every point.
Let us define (see also [30, 31])

(6.7) 1?ý.)(*; F; Q, f{vji ,1, f• ) :=

where

(max f l )4)I
(6.8) mm = m )
The quantity Z.= can be computed using numerical optimization. Then

(6.9) I"F(.)(Q;,T) {T - Q) }
are the approximate regions of tj%-superconvergence for the class of solutions Q.
Remark 6.1. Note that

(6.10) R"F) (Q;'f , T) C ; RT) .

15



Therefore the simplified approach results to a conservative estimate for the r1%-
superconvergence regions.

Remark 6.2. The functions defined in (6.5), (6.7) depend on the set of points =.
To ensure good accuracy in the approximation of the tl%-superconvergence regions
a sufficient number of points must be employed.

7 Numerical study of superconvergence for pe-
riodic meshes of triangles and squares

We will now use the methodology of the previous Section to find the super-
convergence points or the i7%-superconvergence regions for the components of the
gradient of the displacement, strain and stress for finite element solutions of the
equations of elasticity in the interior of periodic meshes of triangular and square
elements. In the numerical examples we addressed the following questions:

1. For periodic meshes of triangles with various mesh-topologies, and elements
of degree p, where are the superconvergence points for the various solution
quantities for the class of "harmonic" solutions? Are these points supercon-
vergence points for the class of general solutions?

2. For meshes of squares of degree p, where are the superconvergence points for
the various quantities for the tensor-product space S(P-P)(f), the serendipity
space S'(f) and the intermediate space S'P(ý)?

3. In the cases that there are no superconvergence points (i.e. 0%-superconvergence
points) where are vl%-superconvergence points for small values of 17%?

We will answer these questions using the computer-based approach of Section 6.

7.1 Determination of the superconvergence points for the
periodic meshes of triangles

The majority of the results for the superconvergence points for the triangular
elements in the literature are given exclusively for the Regular pattern (which
is also known as the three-directional mesh and is shown in Fig. 2a), for linear
and quadratic elements and for the Poisson's equation. In [1] we determined the
superconvergence points for Laplace's and Poisson's equations, for all the mesh
patterns shown in Fig. 2 and elements of degree p, 1 _< p < 7. Here, we employed
the numerical methodoloy of Section 6 to find the superconvergence points, for the

same mesh-patterns, for -u for the class of "harmonic" solutions of the equations
ax,

of plane-elasticity and 1 < p < 4.
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In Fig. 3 (resp. Fig. 4) we give examples of how the superconvergence points
for the class of "harmonic" solutions, for p = 1, 2, 3, were obtained for the Reular
(resp. Criss-Cross) pattern from the intersection of the zero-contours C (S. i; f, T),

of the error functions Oj, i = 1,...,4, which correspond to the basis 'harmonic"
monomials of degree (p + 1). From the numerical results we observe that:

(i) In the Regular, Chevron and Criss-Cross patterns for linear or cubic elements

(p = I or 3), there exists one superconvergence point for u in the elementsOx 1
with an edge parallel to the z 1-axis. This point is located at the midside of
the edge parallel to the x1-axis.

(ii) In the Regular, Criss-Cross patterns for quadratic elements (p = 2) there areau,
two superconvergence points for - in the elements with an edge parallel to

ax,
the xl-axis. These points are located at the Gauss-points of the edge parallel
to the x1-axis.

(iii) In the Chevron pattern, the Union-Jack pattern and element •2 of the Criss-
Cross pattern (shown in Fig. 2d) for quadratic elements (p = 2) there are no

superconvergence points for aul
ax],

(iv) The superconvergence points for the components of the gradient of the dis-
placement for the class of general solutions coincide with the superconver-
gence points for the class of "harmonic" solutions.

(v) There are no superconvergence points for the stress in any of the mesh-
patterns except for the special case that the Poisson's ratio is equal to zero.
In this case the normal stress components all, a22 are superconvergent at

the superconvergence points for ý!l, 1 2, respectively (if such points exist

in the mesh-pattern).

(vi) There are no superconvergence points for the shear-stress in any of the mesh-
patterns.

(vii) For p = 4 there are no superconvergence points in any of the mesh-patterns
for any of the quantities and for all values of Poisson's ratio.
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7.2 q%-superconvergence regions for the components of
the gradient and stress for the periodic meshes of
triangles

For p 2! 3 there are very few (if any) superconvergence points for any of
the solution-quantities for the problem of plane isotropic elasticity. In these cases
suitable mmnpling points (i.e. points where the error in the solution-quantity is
small, asymptotically, with respect to the error in other points in the element)
can be determined from the iV%-superconvergence regions. In the Figs. 5-7 below
we give the regions V. (Q-w'; f; T), for the Regular, Chevron and Criss-Crows

patterns for p = 1, 2, 3 and Poisson's ratio = 0.3. (It should be noted that the
Vj%-scale employed varies in the Figures.) From the numerical results we observe
that:

(i) The regions Z'%t (Q-"'; f; ;) exist for small 17 for almost all the cases (note
2-L

however that j = 100% everywhere in the element -3 of the Criss-Cross
pattern for linear elements, as shown in Fig. 7a).

(ii) For p = 2, in the Chevron pattern there exist q%-superconvergence regions
with minimum q? f 34% (as shown in Fig. 6b).

(iii) For p = 2, 3, in the element r2 of the Criss-Crows pattern there exist q%-
superconvergence regions of significant size (although q may be relatively
large), as shown in Figs. 7b, 7c, respectively.

From the engineering point of view one is mostly interested in determining
optimal sampling points for the stress-components. Except for the special case
of zero Poisson's ratio there are no superconvergence points for any of the stress-
components in any of the mesh-patterns and for elements of any degree p. Here
we show that for elements of degree p > 2 there exist ri%-superconvergence points
for the stress-components in all the mesh-patterns for relatively small values of
V;; these points may be employed as sampling-points for the corresponding stress-
components. In Figs. 8, 9, 10 we give the i7%-superconvergence regions for o11 and
012, for p = 2 and 3, for the Regular, Chevron and Criss-Cross patterns. (The
regions for the Union-Jack are similar and will not be given here; note that the
Union-Jack pattern is obtained by a 45*-rotation of the Criss-Cross pattern.) We
did not give the regions for p = 1 because the minimal values of V% for which
the regions exist are close to 100% for all the mesh-patterns (in other words for
meshes of linear triangles there is not a preferable set of sampling points for the
stress-components, unless the Poisson's ratio is equal to zero).

The minimal value of r1% in the V%-superconvergence regions shown in Figs. 8-
10 are given in Table 1. (We did not report the points where these minima occur
but these can be easily found.) In summary we observed that:
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(i) The regions fR,)(Q"; P;T) for F(u) = a,, or 012 exist (resp. do not exist)
for p, = 2, 3 (resp. for p = 1) for relatively small values of 17%.

(ii) The minimal values of 17% and their locations depend on the mesh-pattern,
the degree p of the elements, the stress-component and the orientation of the
coordinate-axes with respect to the mesh-pattern.

7.3 Superconvergence points for periodic meshes of squares
We also used the computer-based approach to determine the superconver-

gence points for meshes of square elements. Here we investigated the effect of the
choice of the finite-element space (tensor-product, serendipity and intermediate
element-space) on the superconvergence points for the components of the gradient
of displacement, strain and stress. In the cases where there are no superconver-
gence points (for example, in the quartic serendipity element) we reported the
element-coordinates of q%-superconvergence points for minimal values of 1%.

a. Tensor-product and intermediate family

The superconvergence points for and ' are located on the Gauss-lines
Xz1  Oz1

which are parallel to the 1 2-axis and are intersecting the il-axis at the Gauss-
Legendre points of degree p. The (p x p) Gauss-Legendre points are superconver-
gence points for all the components of strain and stress for all Poisson's ratios for
both the "harmonic" and general class of solutions.

b. Serendipity family

For p = 1 and p = 2, the superconvergence points for all the quantities are
exactly the same as the corresponding suverconvergence points for the tensor-
product and the intermediate family i.e. the p x p Gauss-Legendre points in the
element.

In the cubic serendipity element (p = 3) there exist four superconvergence
points and one superconvergence line for the components of the gradient of the
solution for the class of "harmonic" solutions. The superconvergence points for
O-- are given in Table 2 and are shown in Fig. 1la. The four superconvergence

points and the superconvergence line for •!2 we shown in Fig. 1lb. For C12 (and

012) and a,, (and Or22) there is only one superconvergence point, at the center of
the element, as shown in Figs. lIc and l1d, respectively. All points given above are
also superconvergence points for the class of general solutions and all admissible
values of Poisson's ratio. In the special case of zero value for the Poisson's ratio
the superconvergence points for a,11 (resp. 022) coincide with the superconvergence

points for i (resp. U2)
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For the cubic serendipity element we also determined the q7%-superconvergence

regions KF(,)(Q ;f, ,T) for F(u) = - - , a,, and a,2; these are given in
OXI Oxz

Figs. 12a, 12b, 12c, 12d, respectively, for Poisson s ratio equal to 0.3. From Fig. 12c
we observe that some of the points of the 3 x 3 Gauss-Legendre product rule (these
points are often employed to sample the stresses in the cubic serendipity element)
correspond to tl%-superconvergence points for the normal stress components with
V% > 75%. From the same Figure it is clear that it is possible to find sets of
sampling points for the normal stresses with 17% < 50%.

In the quartic serendipity element (p = 4) there are no 0%-superconvergence
points for any of the solution quantities. We found however that there exist q%-
superconvergence points and regions for the components of the gradient, strain
and the stress (for P = 0.3) for small values of t), namely 17% < 2.5%. In

Figs. 13a and 13b we give the tl%-superconvergence regions Rly1 ' (Q'H";r, T) and

R"Z " (Q"'"; , t), respectively, for Poisson's ratio equal to 0.3. In Tables 3b and

3c we give the master-element coordinates of sampling-points for 'E, and a,, with
1% < 2.5%. The iq%-superconvergence regions for C,1, al, for 17<5 25 are shown in
Figs. 13c, 13d, respectively. We also determined the common Y)%-superconvergence
regions for a class of Poisson's ratios (0 _< P 5 0.35). In Fi s. 14a, 14b and 14c

we show the regions f ;"T) for F(u) I al and C121 re-

spectively, for p = 4 and the class of "harmonic" solutions (the Poisson's ratio was
varied from 0 to 0.35 in steps of 0.05). From Fig. 14b it can be seen that there
is a very small common 25%-superconvergence region for aul for all the Poisson's
ratios (0 _< v < 0.35).

7.4 Rate of convergence at the superconvergence points

We checked the rate of convergence of at the superconvergence points
WOX

(given in Sections 7.1 and 7.3) in model computations using relatively coarse
meshes. We considered the Dirichlet problem with data consistent with the exact
solution u 1(z 1,z 2 ) = u2 (Xl1X 2 ) = sin(wz 1 )sin(W•z) (note that u V U-') in the
domain ft = (0, 1)2 which was meshed by a uniform grid of elements (of triangles
in the Regular-pattern or squares). We computed the quantity:

(7.1) E ="max (IO J(Žf , a 7)

where zx"P denotes the superconvergence points in the elements in the subdomain
0l0 = (0.25,0.75)2. We computed the values of E in meshes with mesh-sizes h =
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11 1 We will say that the values of E are superconvergent with rate (p + o0)

if there exists a0 > 0 s.t. lim(h-({+wo)E) = constant.
II-.O

In Table 4a (resp. Table 4b) we give the values of E and h- 3E (resp. h-'E)
computed using a uniform mesh of triangles of Regular pattern with p = 2 (resp.
p = 3). We note that as the element size h is decreased, the values of h-('+1)E
converge to constants; therefore the quantity E converges at the rate of (p + 1) i.e.
ao = 1. In Table 4c we give the values of E and h- 4E computed using a uniform
mesh of cubic serendipity squares of size h. We computed the values of E using the
points given in Table 2 in the subdomain n1o. It can be observed that the values of
the quantity E converge with rate equal to 4. Hence the points given in Sections
7.1 and 7.3 are superconvergence points with rate equal to (p + 1).

We also checked the value of relative error at the 17%-superconvergence points
for the quartic serendipity element which are given in Table 3a. We considered
the Dirichlet problem in A - (0, 1)2 with data consistent with the exact solu-
tion ul(z1 , z2) = u 2(Xz, X2) = sin(wzl) sin(Wz 2) and computed its finite elements
solution on a 9 x 9 uniform grid of serendipty squares. For this finite element

OU 1solution we computed the values of the relative error O(z,; -; u, u1h; j, ) at the
8:1

(4 x 4) Gauss-Legendre points and at the i7%-superconvergence points given in
Table 3a for the central element of the (9 x 9) square mesh which coincides with

the square ( , 5)2. In Table 6a we give the values of the relative error at the

(4 x 4) Gauss-Legendre points while in Table 6b we give the values of the error at
the ri%-superconvergence points given in Table 3a. It can be seen that the rela-
tive error at several of the (4 x 4) Gauss-Legendre points is nearly 47% while at
the ri%-superconvergence points from Table 3a the relative error does not exceed
3%. Thus, the iV%-superconvergence points of Table 3a should be used as sam-
pling points in the quartic serendipity element instead of the points of the 3 x 3
Gauss-Legendre product-rule.

8 Summary of conclusions

1. We presented a study of superconvergence for finite element approximations
of plane elasticity. We employed a computer-based methodology which takes
directly into account the topology of the grid, the element-space, the class of
solutions and the value of Poisson's ratio.

2. We determined the superconvergence points for the components of the gradi-
ent of the displacement, the strain and the stress. We observed the following:

a. For meshes of triangles of degree p, 1 < p __ 4.
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(i) For some mesh-patterns (Regular, Criss-Cross, Chevron) there exist
superconvergence points for the components of the gradient of the
displacement. These points are the same as the superconvergence
points for the components of the gradient for finite element solutions
of Poisson's equation given in [1]. The location of the points does
not depend on the value of Poisson's ratio.

(ii) There are no superconvergence points for any of the stress-components
(except for the normal stress-components when the Poisson's ratio
is equal to zero) or the shear strain in any of the mesh-pattern.

(iii) For p = 4 there are no superconvergence points for any of the quan-
tities in any of the patterns:

(iv) Suitable sampling points for the stresses can be obtained by locating
minimal q%-superconvergence points in each pattern for each stress-
components, for each element-degree p.

b. For meshes of squares of degree p, I < p < 4.

(i) For elements of the tensor-product or the intermediate family for
1 < p :5 4 and elements of the serendipity family for p = 1 and 2
the points of the p x p Gauss-Legendre product-rule are supercon-
vergence points simultaneously for the components of the gradient
of the displacement, the strain and the stress.

(ii) For the cubic serendipity square there exist four superconvergence
points and one superconvergence line the components of the gradi-
ent of the displacement. For the normal components of stress (for
non-zero values of Poisson's ratio) and the shear-strain there is only
one superconvergence point located at the center of the element.

(iii) For the quartic serendipity square there are no 0%-superconvergence
points for any of the solution quantities. However it is possible to
locate IV%-superconvergence points, for the components of the gra-
dient and the stress, for small values of q/% (q% < 2.5%). The
values of the solution quantities are much more accurate, asymp-
totically, at the corresponding ?q%-superconvergence points than the
values of the quantities at the 4 x 4 points of the Gauss-Legendre
product-rule.
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Appendix
"Harmonic" monomials of degree p + 1 (1 < p 5 4)

Below we give the "harmonic" basis monomials of degree (p + 1), for the space
Q-HN defined in Section 6, for the equations of plane elasticity and 1 _5 p • 4.

a. Quadratic "harmonic" monomialb

Q1HU(ZTI, 2 ; al,a 3, 11, 11) =al al+ a2 X~+ a3 Zl2

where

A+_2p A + P A + 2ju '+Pa2 = - a, -- 3 bi bý- a3
p 2p ' p 2p

b. Cubic "harmonic" monomials

3 X2 2 2
Qi"(X,,2;a3,a,,bb4) = a1 1 + a 2 : 2  1 3 XIX2 + a 4 :,, 2

3 1: + 12:X3 + 113:1:2 +14:2Q;H" (XI, I 2; a3, a4, 43, 4,) = b, xi + 2 2• + 44 =,= ÷bX•2

where

3(A + 2p)1  3(A + 2p) =3( 3(A + 2p

A+2p ,7 A+P b - 2 -, +2p ,a+p

3j 3 3, 3p 3p 3

c. Quartic "harmonic" monomials

X 4 T4 X3 X22 X3
Q2.1"l (IT2; a3, as, b6, b5) a,: 1 + a2 :2 + a3 :1 : 2 + a 4 :1 2 + a., 1 2

.T4~: + b2 X4 + b3 X1 a3 + b4 X24 + b5 : X3
Q;H"(XllX2; a3, a., b3, bs) --bx 1 b2= 2 13,]+ 2 IX

where

27



4 _-3p . 3(A + 2p) 4= 3p 3(A + 2p)
2(A+ 2(A+p) a4= 2 (A +i)bs 2(A +p) 11

,-I-p p p,2 A+# p
G4(.X+25)b56(,X+2p) ~ 4 (A + 2 #) 6(A +2p)11

d. Quintic harinonic" monomials

4= a, x 5 +a32 -a 32 23

a1 IX2+ a242 + a3 1 2 + a4:: 2 + a5:1:2 +a:

= b1 TS + 12 __52 + b3 Xa4 + b4X2{3l + bS +3

where

"3 A + A ba - p A+p - bp

"a - 2(A + 2p) 2(X + 2p,) 11 " 2 (A + 2p) 2(A + 2p)5

ae- +2p a4 -+p 44, b6= A +I 2p 44L+P aA+2p A2p 2p 42p

a, -(-X+P) b 4 2= (A+P,) P -
a= (A+2p) ' 10(A2 + 2p), 2 5(A + 2p) a 10( + 2p) 4

a2  (A++2pa (+'+p)b b,= (A+21  (A +P) a
lop0 5p lOp 5-p
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Minimal values of i7% for the stress-components

Degree of Regular pattern Chevron pattern Criss-Cross pattern
the elements 01 612 o 0,l t __2M 0___ o`12

5.53%(r,) 28.75%(Tr)
18.17% 5.75% 11.79% 12.19%

30.50%(Tr2 ) 24.51%(r 2 )

10.77%(,r,) 6.91%(,r,)
p = 3 8.71% 13.33% 11.5% 3.88%

1.07%(7-2 ) 6.07%('r2 )

Table 1. q%-superconvergence of stress-components in the meshes of triangles:
Minimal values of 1,% for the all, f12 components in the Regular, Chevron and
Criss-Cross mesh-patterns.
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Cubic serendipity square elements

Superconvergence points for O 832

Points 1, &2

1 .000000O0O00 1-1, 1)
2 .774596669175 .577350269112
3 -.774596669175 .577350269112
4 -.774596669175 -.577350269112
5 .774596669175 -.577350269112

Table 2. Superconvergenceoints for cubic serendipity square dements: Super-

convergence points for ,.., - Note that there are four superconvergence points
Ox' Ox *

and one superconvergence line and are valid also for the class of general solutions
and all values of Poisson's ratio.
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Quartic serendipity square elements

o-1
rl%-superconvergence points for

Point *1 *2 11%

1 -0.6000 -1.0000 2.154
2 0.6000 -1.0000 2.154
3 0.0000 -0.6364 0.952
4 -0.5273 0.0000 0.150
5 0.5273 0.0000 0.150
6 0.0000 0.6364 0.952
7 -0.6000 1.0000 2.154
8 0.6000 1.0000 2.154

Table 3a. i%-.superconvergence points for quartic serendipity square dements:

Sampling points for ! i wth q% < 2.5X for Poisson's ratio v = 0.30.
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Quartic serendipity square elements

#I%-superconvergence points for e12

Point &1 &2 9%

1 0.0000 -0.6727 0.724
2 -0.4909 0.0000 0.499
3 0.4909 0.0000 0.499
4 0.0000 0.6727 0.724

Table 3b. ij%-saperconvergence points for qvartic serendipity square dements:
Samplin9 points for C12 with 11% < 0.75% for Poisson's ratio v = 0.30.
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Quartic serendipity square elements

i?%-superconvergence points for or,

Point fe 12 9%

1 0.0000 -0.5818 1.334
2 -0.5636 0.0000 0.815
3 0.5636 0.0000 0.815
4 0.0000 0.5818 1.334

Table 3c. vj%-esperconvrgence points for quartic serendipity square dements:
Sampling points for a,, with 1% < I.5% for Poisson's ratio v = 0.30.
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Rate of convergence at the superconvergence points

Regular pattern; quadratic triangles

It ov_ I __
mnaX 1r -8* h .sP -3 Max ~ _f~ (_gulP)4.-=,. ex, as, /' I- ._.ED R , ,

.25 0.032184 2.057
.125 0.003927 2.011

.0625 0.000488 1.999
.03125 0.000061 1.9%

Table 4a. Rate of convergence at the superconvergence points: Values of# OU h & . aul auh ,.
max I(!--' - )(w8OP)I and h- 3 ax )(---&-"(z?")1. Dirichlet prob-=," F~i e Os Ozl 8-T MI=" En0 ' OXi x

lem in (I = (0,1)2 with data consistent with the exact solution, u1 (zXz 2) =

u2(z1 , Z2) = sin(rzj) sin(irz 2), (10 := (0.25,0.75)2. Grids of quadratic triangular

elements in the Regular pattern. Note that the values of au at the superconver-

gence points are superconvergent with rate of convergence equal to 3.
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Rate of convergence at the superconvergence points

Regular pattern; Cubic triangles

h maEx Ol - - )a(-UA) h-4 m (X -aU) (g8U P)

.25 0.0007548 0.193
.125 0.0000525 0.215

.0625 0.0000035 0.226
.03125 0.0000002 0.231

Table 4b. Rate of convergence at the superconvergence points: Values ofaul Ohl -14 OUl OUhlmax IC•c'P I/, alnd h- .Max 1( - )= Dlirih,,t prob-
zE•.PEo 8X 1 z4E. 8zt 01 7

lem in fl - (0,1)2 with data consistent with the exact solution, u1(X1 ,Z2) =
u2(&I, 2) = sin(irz) sin(rZ2), fIo := (0.25,0.75)2. Grids of cubic triangular ele-

ments in the Regular pattern. Note that the values of -u at the superconvergence
8XI

points are superconvergent with rate of convergence equal to 4.
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Quartic serendipity square elements

A%-superconvergence for

h max It _ ( h- (a (_•'
Z?~h-4 Max 8~ zE 8ZI cgs,

0.2500 .12053504E+00 30.8570
0.1250 .70559307E-02 28.9011
0.0625 .43019091E-03 28.1930

Table 5. Rate ojconvergence at the superconvergence points: Values of

,max KOz 1 - '1)(x.*P)I and h--4 max ,('. ---=)(zsw)1. Dirichlet prob-

lem in fl = (0,1)2 with data consistent with the exact solution, u1(zXZ2) =
u2(zI, I2) = sin(wrj) sin(WZ2 ), f? :(0.25,0.75)2. Meshes of cubic serendipity

squares. Note that the values of &I at the superconvergence points are supercon-

vergent with rate equal to 4.
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Relative error at the 4x4 Gauss-Legendre points

Point &I i2 8(w1; !hi; u,, h,r)

1 -.861136311600 -.861136311600 30.5947
2 -.861136311600 .861136311600 30.5948
3 -.861136311600 -.339981043600 30.4170
4 -.861136311600 .339981043600 30.4171
5 .861136311600 -.861136311600 30.5948
6 .861136311600 .861136311600 30.5947
7 .861136311600 -.339981043600 30.4171
8 .861136311600 .339981043600 30.4170
9 -.339981043600 -.861136311600 6.1581
10 -.339981043600 .861136311600 6.1580
11" -.339981043600 -.339981043600 46.5763
12 -.339981043600 .339981043600 46.5762
13 .339981043600 -.861136311600 6.1580
14 .339981043600 .861136311600 6.1581
15 .339981043600 -.339981043600 46.5762
16 .339981043600 .339981043600 46.5763

Table 6a. Values of the relative error O(w; -!-ti; u, uh,,r) at the 4X4 Gaubs-

Legendre points: Quartic serendipity square element. Dirichlet problem in f) =
(0,1)2 with data consistent with the exact solution ul(:1 , 2) = u 2(Z1 , :2) =

sin(irT:) sin(K: 2). The domain 0 was discretized using a 9x9 uniform mesl of
quartic serendipity elements. The relative errors are reported for the element at
the center at the center of the mesh. Note that the values of the relative error at
some of the Gauss-Legendre points exceeds 45%.

37



Relative error at the points from Table 3a

8uPoint *1 &2 O(x,; 1; u, ul,, h, r)

1 -.6000 -1.00000 .5797
2 .6000 -1.00000 .5797
3 .0000 -.63640 .0001
4 -.5273 .00000 2.8799
5 .5273 .00000 2.8799
6 .0000 .63640 .0001
7 -.6000 1.00000 .5797
8 .6000 1.00000 .5797

ou1
Table 6b. Values of the relative error O(zx; -2-.; u, ujh, h, 7) at the ij%-supercon-

vergence points (from Table 3): Quartic serendipity square element. Dirichlet
problem in A = (0,1)2 with data consistent with the exact solution uS(X, Z2) =

u2(z1 , Z2) = sin(wz1 ) sin(irz2 ). The domain 11 was discretized using a 9x9 uniform
mesh of quartic serendipity elements. The relative errors are reported for the
element at the center at the center of the mesh. Note that the values of the
relative error do not exceed 3%.
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List of Figures
Fig. 1. An example of a locally periodic grid of squares: An adaptive grid with a
periodic mesh-subdomain. The mesh outside the subdomain was refined in order
to control the pollution-error in the interior of the subdomain.

Fig. 2 Periodic meshes of triangles. (a) Regular pattern; (b) Chevron pattern; (c)
Union-Jack pattern; (d) Criss-Cross pattern.

Fig. 3. Superconvergence points for - for the class of "harmonic" solutions of
OzX

the equations of plane elasticity: Triangular elements in the Regular patte'.-. The
superconvergence points are located at the intersection of the contours M (Qi;

fT), i = 1,... ,4. In the Figures the 0%-contours of the error corresponding to the
various monomials were drawn with different thicknesses and the element bound-
aries were drawn with dashed lines. The 0%-contours and the superconvergence
pointe are given for: (a) Linear elements (p = 1); (b) Quadratic elements (p = 2);
(c) Cubic elements (p = 3). Note that the superconvergence points are shown in
each Figure by a solid circle and are also superconvergence points for the class of
general solutions and foT all values of Poisson's ratio.

0)ul
Fig. 4. Superconvergence points for 0 for the class of "harmonic" solutions

ax,
of the equations of plane elasticity: Triangular elements in the Criss-Cross pat-
tern. The superconvergence points are located at the intersection of the contours
Ck (Q ;f , T), i = 1,.. .,4. In the Figures the 0%-contours of the error cor-

responding to the various monomials were drawn with different thicknesses and
the element boundaries were drawn with dashed lines. The 0%-contours and the
superconvergence points are given for: (a) Linear elements (p = 1); (b) Quadratic
elements (p = 2); (c) Cubic elements (p = 3). Note that the superconvergence
points are shown in each Fig. by a solid circle and are also superconvergence points
for the class of general solutions and for all values of Poisson's ratio.

Fig. 5. iq%-superconvergence regions for Ou, for the class of "harmonic" so-
ax

lutions of the equations of plane elasticity: .rangular elements in the Regular
pattern. The regions V11% (QIIf"; T) are given for: (a) Linear elements (p = 1);

(b) Quadratic elements (p = 2); (c) Cubic elements (p = 3). The 1?%-levels 5%,
15%, 30% (dark, light, lighter gray) were employed.

Fig. 6. mq%-superconvergence regions for O-- for the class of "harmonic" solutions
Ox,

of the equations of plane elasticity: Triangular elekr nts in the Chevron pattern.

39



The regions .* (Q'U-; f; T) are given for: (a) Linear elements (p = 1) (rp%-levels:

5%, 15%, 30%); (b) Quadratic elements (p = 2) (17%-levels: 40%, 50%, 60%); (c)
Cubic elements, (p = 3) (i9%-levels: 5%, 15%, 30%).

Ou!
Fig. 7. q%-superconvergence regions for - for the class of "harmonic" solutions

Ox1
of the equations of plane elasticity: Triangular elements in the Criss-Cross pattern.
The regions II .6 (Q *; ; fT) are given for: (a) Linear elements (p = 1) (q%-levels:

5%, 15%, 30%); (b) Quadratic elements (p = 2) (9%-levels: 10%, 30%, 50%); (c)
Cubic elements (p = 3) (9%-levels: 5%, 15%, 30%).

Fig. 8. q%-superconvergence regions for o11 and 012 for the class of "harmonic"
solutions of the equations of plane elasticity: Triangular elements in the Regular
pattern. (a) 7?4%(Qu-.fT), p = 2, min q%= 18.17%; (b) ,t'.4(Q",";f,T),V

p = 2, min 17% = 5.75%; (c) IZ"* (Q"'. ,T), p = 3, min 17% = 8.71%; (d)

712 (Q .f, T), p = 3, min 7% = 13.33%. The 7%-levels 10%, 30%, 60% (dark,
light, lighter gray) were employed.

Fig. 9. 17-superconvergence regions for o, and O12 for the class of "harmonic"
solutions of the equations of plane elasticity: Triangular elements in the Chevron
pattern. (a) IZ*(Q ,;f,T), p = 2, min 9% = 11.79%; (b) IT-"(Q"'u;f'T)',
p = 2. min 17% = 12.19%; (c) VIYO (Q f•, T), p = 3, min 9% = 11.50%; (d)

2 (Q-. f, T), p = 3, mrin i% = 3.88%. The 17%-levels 10%, 30%, 60% (dark,
light, lighter gray) were employed.

Fig. 10. 1 7-superconvergence regions for aI and a12 for the class of "harmonic"
solutions of the equations of plane elasticity: Triangular elements in the Criss-
Cross pattern. (a) R 1(Q"u"; f ,), p = 2, min 17% = 5.53%, min 1% = 30.50%; (b)

7~2

t (Q". •, 1'), p = 2, mn 17% = 28.75%, min 7% = 24.51%; (c) It (Q-r; f, T),
22 '71 T2 all

p = 3, min17% = 10.77%, mnm 1% = 1.07%; (d) 796 (QIw; f, fl, p = 3, min7% =
71'2  12 7

6.91%, min17% = 6.07%. The 1%-levels 10%, 30%, 60% (dark, light, lighter gray)
2

were employed.

Fig. 11. Superconvergence points for the class of "harmonic" solutions of the
equations of plane elasticity: Cubic serendipity square elements. The supercon-
vergence points are located at the intersection of the contours M (MR"';",T),

OU . u Ru•
i = 1,..., 4. Superconvergence points for (a) 2-1 ; (b) ; (c) a,,; (d) CU. Note

that for the components of the gradient there are four superconvergence points
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and one superconvergence line. For the components of stress and the shear-strain
there is only one superconvergence point located at the center of the element.
The superconvergence points are shown in each Figure by a solid circle and are
also superconvergence points for the class of general solutions and for all values of
Poisson's ratio.

Fig. 12. q%-superconvergence regions for the class of "harmonic" solutions of
the equations of plane elasticity: Cubic serendipit square elements. The regions

F(.)(Q f ; T) are given for F(u): (a) ; (b) --i; (c) all; (d) cE2 for Poisson's

ratio v = 0.30. For C, &2 e12 the Yi%-levels 5%, 10%, 25% (dark, light, lighter

gray) were employed; for a,, the Yj%-levels 25%, 50%, 75% were employed.

Fig. 13. ,q%-superconvergence regions for the class of "harmonic" solutions of
the equations of plane elasticity: Quartic serendipity square elements. The regions"•.):, w' CA air -r gieo ~ ) a ul aUl

f; T) are given for Fu) (a) (b) -7; (c) o"11; (d) C12 for Poisson's

ratio v = 0.30. The ,i%-levels 5%, 10%, 25% (dark, light, lighter gray) were
employed.

Fig. 14. Common 25%-superconvergence regions for all Poisson's ratios v, 0 <
v _ 0.35, for the class of "harmonic" solutions of the equations of plane elasticity:
Quartic serendipity square elements. The regions n "-F(,)(Q f, T) are

O<&v<O.35

given for F(u) : (a) ,(b) o; (c) 12 -
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TMh Laboratory for Nuierical Analysis is an integral part of the Institute for Physical
Science and Technology of the University of Maryland, under the genern! administration of the
Director, Institute for Physical Science and Technology. It has the follos ý goals:

"* To conduct research in the mathematical theory and computational implementation of
numerical analysis and related topics, with emphasis on the numerical treatment of
linear and nonlinear differential equations and problems in linear and nonlinear algebra.

"* To help bridge gaps between computational directions in engineering, physics, etc., and
those in the mathematical community.

"* To provide a limited consulting service in all areas of numerical mathematics to the
University as a whole, and also to government agencies and industries in the State of
Maryland and the Washington Metropolitan area.

"* To assist with the education of numerical analysts, especially at the postdoctoral level,
in conjunction with the Interdisciplinary Applied Mathematics Program and the
programs of the Mathematics and Computer Science Departments. This includes active
collaboration with government agencies such as the National Institute of Standards and
Technology.

"* To be an international center of study and research for foreign students in numerical
mathematics who are supported by foreign governments or exchange agencies
(Fulbright, etc.).

Further information may be obtained from Professor I. Babudka,Chairman, Laboratory for
Numerical Analysis, Institute for Physical Science and Technology, University of Maryland, College
Park, Maryland 20742-2431.


